jueves, 25 de octubre de 2012

TEMA II OLEAJE Y MAREAS


Oleaje y mareas.


Desplazamiento vertical: olas y mareas
Las olas son producidas por los vientos que barren la superficie de las aguas. Mueven al agua en cilindro, sin desplazarla hacia adelante pero, cuando llegan a la costa y el cilindro roza con el fondo, inician una rodadura que acaba desequilibrando la masa de agua, produciéndose la rotura de la ola.

Los movimientos sísmicos en el fondo marino producen, en ocasiones gigantescas olas llamadas tsunamis.

Las mareas tienen una gran influencia en los organismos costeros, que tienen que adaptarse a cambios muy bruscos en toda la zona intermareal: unas horas cubiertas por las aguas marinas y azotadas por las olas, seguidas de otras horas sin agua o, incluso en contacto con aguas dulces, si llueve.

Además, en algunas costas, por la forma que tienen, se forman fuertes corrientes de marea, cuando suben y bajan las aguas, que arrastran arena y sedimentos y remueven los fondos en los que viven los seres vivos.

En la cercanía del litoral se suelen producir corrientes costeras de deriva, muy variables según la forma de la costa y las profundidades del fondo, que tienen mucho interés en la formación de playas, estuarios y otros formas de modelado costero.

La energía liberada por las olas en el choque continuo con la costa, las mareas y las corrientes tienen una gran importancia porque erosionan y transportan los materiales costeros, hasta dejarlos sedimentados en las zonas más protegidas. En la formación de los distintos tipos de ecosistemas costeros: marismas, playas, rasas mareales, dunas, etc. también influyen de forma importante los ríos que desemboquen en el lugar y la naturaleza de las rocas que formen la costa
OLEAJE.
Las olas son ondas que se desplazan por la superficie de mares, océanos, ríos, lagos, canales, etc.





CLASIFICACIÓN DE LAS ONDAS.

En función del medio en el que se propagan



Tipos de ondas y algunos ejemplos.
§  Ondas mecánicas: las ondas mecánicas necesitan un medio elástico (sólido, líquido o gaseoso) para propagarse. Las partículas del medio oscilan alrededor de un punto fijo, por lo que no existe transporte neto de materia a través del medio. Como en el caso de una alfombra o un látigo cuyo extremo se sacude, la alfombra no se desplaza, sin embargo una onda se propaga a través de ella. La velocidad puede ser afectada por algunas características del medio como: la homogeneidad, la elasticidad, la densidad y la temperatura. Dentro de las ondas mecánicas tenemos las ondas elásticas, las ondas sonoras y las ondas de gravedad.
§  Ondas electromagnéticas: las ondas electromagnéticas se propagan por el espacio sin necesidad de un medio, pudiendo por lo tanto propagarse en el vacío. Esto es debido a que las ondas electromagnéticas son producidas por las oscilaciones de un campo eléctrico, en relación con un campo magnético asociado. Las ondas electromagnéticas viajan aproximadamente a una velocidad de 300000 km por segundo, de acuerdo a la velocidad puede ser agrupado en rango de frecuencia. Este ordenamiento es conocido como Espectro Electromagnético, objeto que mide la frecuencia de las ondas.
§  Ondas gravitacionales: las ondas gravitacionales son perturbaciones que alteran la geometría misma del espacio-tiempo y aunque es común representarlas viajando en el vacío, técnicamente no podemos afirmar que se desplacen por ningún espacio, sino que en sí mismas son alteraciones del espacio-tiempo.

En función de su dirección

§  Ondas unidimensionales: las ondas unidimensionales son aquellas que se propagan a lo largo de una sola dirección del espacio, como las ondas en los muelles o en las cuerdas. Si la onda se propaga en una dirección única, sus frentes de onda son planos y paralelos.
§  Ondas bidimensionales o superficiales: son ondas que se propagan en dos direcciones. Pueden propagarse, en cualquiera de las direcciones de una superficie, por ello, se denominan también ondas superficiales. Un ejemplo son las ondas que se producen en una superficie líquida en reposo cuando, por ejemplo, se deja caer una piedra en ella.
§  Ondas tridimensionales o esféricas: son ondas que se propagan en tres direcciones. Las ondas tridimensionales se conocen también como ondas esféricas, porque sus frentes de ondas son esferas concéntricas que salen de la fuente de perturbación expandiéndose en todas direcciones. El sonido es una onda tridimensional. Son ondas tridimensionales las ondas sonoras (mecánicas) y las ondas electromagnéticas.

En función del movimiento de sus partículas



§  Ondas longitudinales: son aquellas que se caracterizan porque las partículas del medio se mueven o vibran paralelamente a la dirección de propagación de la onda. Por ejemplo, un muelle que se comprime da lugar a una onda longitudinal.
§  Ondas transversales: son aquellas que se caracterizan porque las partículas del medio vibran perpendicularmente a la dirección de propagación de la onda.

En función de su periodicidad

§  Ondas periódicas: la perturbación local que las origina se produce en ciclos repetitivos por ejemplo una onda senoidal.
§  Ondas no periódicas: la perturbación que las origina se da aisladamente o, en el caso de que se repita, las perturbaciones sucesivas tienen características diferentes. Las ondas aisladas también se denominan pulsos.



II.1.2 Teoría del oleaje. Primera aproximación de Stokes.

Las olas son producidas por diferentes causas. Existen olas que son generadas por el viento, por las mareas, por tormentas, por oscilaciones o por terremotos. Estas últimas se conocen como Tsunamis; son olas que alcanzan alturas considerables cuando rompen contra las costas.

Para que se genere una ola se requiere que exista una fuente de energía que, al transmitir al agua en reposo una cantidad determinada de energía, produce un movimiento oscilatorio de las partículas del líquido sin que haya un transporte importante de masa. Este movimiento oscilatorio es similar al que se induce por vibración a una cuerda que esté fija por sus dos extremos. Como se verá más adelante, la propagación de la energía dentro de la masa de agua está relacionada estrechamente con la propagación de las olas que se generan con esa energía.

El desarrollo de la Teoría de las olas se basa en la aplicación de las ecuaciones de Navier-Stokes en el flujo de fluídos viscosos en régimen no permanente.

La teoría que se trata en el texto se conoce como Teoría de Stokes . Algunos autores, como Iribarren por ejemplo, prefieren la Teoría Trocoidal la cual tiene un tratamiento matemático más complicado.

Para su estudio las olas se clasifican en Olas de pequeña amplitud y Olas de amplitud finita. Las primeras representan alteraciones pequeñas en la superficie del agua y no ocasionan problemas notables a las estructuras que están localizadas en alta mar o en la costa. Las olas de amplitud finita son las olas que interesan en los diseños de puertos, estructuras marinas y obras de protección de playas.

El estudio de las olas de pequeña amplitud se basa en la Teoría Lineal en la forma como fue desarrollada por Stokes. Es una aplicación simplificada de la ecuación general del flujo no permanente.


                                            
Supone que el flujo es irrotacional y utiliza solamente el primer término de la ecuación de Navier-Stokes. El resultado es una Ola Sinusoidal que tiene las siguientes características:

Los tres valores que caracterizan una ola son:

H=Altura
L=Longitud
T = Período.

El período T es una característica constante de la Ola durante su existencia. La longitud L y la altura H se modifican a medida que la Ola se desplaza desde el mar hacia la costa.

Se define como Mar Profundo aquel en el cual la relación entre la Longitud de la Ola y la Profundidad del agua es mayor que 2. Cuando la Ola está en mar profundo la rugosidad del fondo no afecta su comportamiento, pero a medida que entra al mar poco profundo la Longitud de la Ola tiende a disminuír y la Altura a aumentar por efecto de la fricción de la masa de agua con el fondo.

Las siguientes son las características de una Ola individual en mar profundo:

d = Profundidad del agua.
d / Lo > 1/2

Ho = Altura de la Ola.
Lo = Longitud de la Ola.
T = período.
Co = Celeridad o Velocidad de Fase = Lo / T

Co = 1.56 T m/s ( sistema métrico)

El mar es Medianamente profundo cuando la relación d/L está comtprendida entre 1/2 y 1/10. En este caso se tienen las siguientes relaciones:

L = Lo tgh Kd
C = Co tgh Kd

tgh Kd = tangente hiperbólica de Kd, donde K es el Número de la Ola ( K = 2 Pi / L )

Cuando d/L es menor que 1/10 la profundidad del agua es muy pequeña y se aceptan las siguientes aproximaciones:

L = T ( gd )1/2
C = ( gd )1/2

g = 9.81 m/s2.

II.1.3 Geometría estadística del oleaje. Distribución de Raleigh.

Para que se pueda realizar el análisis estadístico de las olas es necesario tener un registro de olas en el sector de interés. Desafortunadamente estos registros existen en muy pocos lugares del mundo debido a los altos costos de los equipos de registro y procesamiento de datos. 

Cuando se tienen los datos históricos se seleccionan los trenes de olas que han ocurrido a lo largo de varios años, se determinan amplitudes y períodos de las olas y se aplican los métodos estadísticos ue se describen en la literatura especializada ( Longuett-HigginsIppenWiegel) para determinar la magnitud y el período de la Ola Significativa y de las Olas Máximas esperadas. 

En una serie de olas, ordenadas de mayor a menor según su amplitud, la Ola significativa se define como el promedio de las amplitudes de las olas que están en el tercio superior de la serie.

II.1.4 Predicción de oleaje.

Cuando el viento sopla sobre una superficie de agua se generan dentro de la masa de agua unos movimientos oscilatorios cuya magnitud depende de la velocidad , dirección y tiempo durante el cual sopla, del área sobre la cual sopla el viento y de la profundidad del agua en dicha zona. Estos movimientos oscilatorios se visualizan en la superficie produciendo cambios en el nivel del agua y constituyen las olas generadas por el viento. 

Estas olas se propagan a lo largo de líneas cuyas direcciones dependen de la geometría del área sobre la cual sopla el viento, de la dirección del viento y de la conformación del fondo. La propagación de las olas no se produce en forma individual sino que ellas forman trenes de olas de  diferentes amplitudes y períodos. 

En los estudios de ingeniería que se realizan en el mar y en la costa es necesario predecir cual será el comportamiento del oleaje durante las etapas de construcción y de operación de las obras. La predicción de las olas consiste en el pronóstico de los valores medios y extremos de Amplitud, Período, Longitud y Celeridad de las olas que pueden llegar a los sitios de influencia de los proyectos. 

Para realizar los pronósticos existen dos metodologías , en la primera se realizan los análisis estadísticos de las olas históricas que llegan  al sitio del proyecto; la segunda utiliza métodos empíricos que tienen como referencia los estudios de investigadores de diferentes partes del mundo.

II.1.5 Fenómenos del oleaje. Rompiente, refracción, difracción y reflexión.

Cuando las olas, propagándose hacia la costa, ingresan en áreas de agua poco profundas se dice que las olas sienten el fondo y es allí donde las olas sufren la mayor cantidad de transformaciones, disminuyen su velocidad y aumenta su altura, modificando su trayectoria y haciéndose cada vez más inestables.  Los tres fenómenos principales en aguas poco profundas son:

                                   a) Refracción, b) Difracción,   c) Reflexión y d) Rompiente

a) Refracción:
Cuando las olas se acercan a la costa aumentan su altura y entonces interfieren con el fondo. Allí el tren de olas cambia de dirección, acomodándose a la topografía submarina la que generalmente coincide con la topografía costera emergida. La topografía sumergida se representa por líneas imaginarias que unen puntos de igual profundidad. Estas líneas se denominan Isobatas. Por ende, si la costa presenta una serie de entrantes y salientes (cabos y bahías) las isobatas seguirán ese patrón morfológico.  Si asemejamos las crestas de las olas a una recta y vemos de que forma interfiere con la topografía sumergida de entrantes y salientes, es factible ver que las olas primero interferirán con las salientes (cabos) produciéndose el retardo en el avance de las olas en dicho sector. En contraposición, el sector de las cresta de la ola que coincida en su avance con una entrante (bahía) se adelantará respecto del sector de ola aledaño ya que no interferirá con el fondo hasta unos metros después que en las salientes. Es así que se produce la deformación de la cresta recta, la cual se acomoda a la topografía del fondo y copia esta topografía hasta ponerse paralela a las isobatas.  En este caso se dice que las olas se refractan. Así, en los cabos las olas convergen y se produce una acumulación de la masa de agua generándose concentración de energía. En cambio, en las entrantes (bahías) se produce divergencia de olas, hay menor volumen de agua y por la tanto hay disipación de energía.  Esto produce una distribución irregular de alturas de olas a lo largo de la costa. La mayor altura de olas se produce en los cabos y la menor en la bahías. El resultado será una corriente paralela a la costa desde los cabos hacia las bahías.

b) Difracción:
Asociado con el fenómeno de refracción las olas sufren fenómenos de difracción. La difracción es un fenómeno por el cual un tren de olas cambia de orientación y se propaga dentro de un sector protegido cuando el tren de olas encuentra un obstáculo (muelle, espigón, barrera costera, etc.) a su libre propagación.  Para que ocurra este fenómeno la energía de la ola debe transmitirse por la creta de la ola desde el sector donde primero interfiere con el obstáculo hacia el sector del tren de olas que se propaga libre por el cuerpo de agua.  Mientras el primer sector se frena, transmite la energía lateralmente al segundo que sigue avanzando hacia sectores protegidos por el obstáculo. Generalmente refracción y difracción ocurren asociados.

c) Reflexión:
Esto ocurre en costas con perfil muy abrupto de modo tal que las olas no interfieren con el fondo, inciden  directamente contra las costas y se reflejan nuevamente hacia el mar aumentando su altura. Esto particularmente importante en la construcción de paredones y rompeolas ya que estos constituyen superficies perfectamente reflectivas.  Por lo cual luego de la reflexión, aumenta la altura de la ola, se erosiona el fondo frente al rompeolas y este finalmente pierde sustento y cae.

d) Rompiente:
En determinado momento de avance de las olas por aguas poco profundas, se produce un incremento de altura tal acompañada de una notoria disminución de la longitud de onda que las olas se hacen muy inestables y se produce la rompiente de las mismas.  Luego de producida la rompiente la masa de agua es dominada por la turbulencia mientras se produce un movimiento efectivo y derrame de la masa de agua hacia la costa. Ello genera una celda de circulación costera caracterizada por distinto tipo de corrientes litorales que no sólo transportan agua sino también material sedimentario a lo largo y ancho de la costa.

II.1.6 Medición en campo. Oleaje y batimetría.
La batimetría es la ciencia que mide las profundidades marinas para determinar la topografía del fondo del mar, lacustre o fluvial actualmente las mediciones son realizadas por GPS diferencial para una posición exacta, y con sondadores hidrográficos mono o multihaz para determinar la profundidad exacta, todo ello se va procesando en un ordenador de abordo para confeccionar la carta batimétrica. El conocimiento de las profundidades de un área tiene gran importancia para la seguridad de la navegación. La información batimétrica puede utilizarse para diversos fines, como la ingeniería costera (instalación de estructuras, construcción de muelles, dragados, etc.) y para estudios científicos.
Una Carta batimétrica es un mapa que representa la forma del fondo de un cuerpo de agua, normalmente por medio de líneas de profundidad, llamadas isobatas, que son las líneas que unen una misma profundidad, las líneas isibáticas son los veriles que nos indican la profundidad en las cartas de navegación.

II.2  Mares
Un mar es una masa de agua salada de tamaño inferior al océano, así como también el conjunto de la masa de agua salada que cubre la mayor parte de la superficie del planeta Tierra, incluyendo océanos y mares menores.

La definición comparativa de mar como «extensión de agua salada menor que el océano» establece una clasificación de las extensiones de agua salada en que los océanos serían las mayores extensiones y vendrían luego, de diferentes tamaños, los mares. Los mares se diferencian principalmente por el contacto con el océano, pudiendo ser abiertos o cerrados: si está rodeado casi totalmente por tierra, como el mar Negro, se habla de mar continental, mientras que si está muy abierto, como el mar de la China, se habla de mar litoral.

La distinción entre mar y océano obedece a diversas causas, sobre todo cuando se habla de mares abiertos en que suele distinguirse atendiendo a la situación geográfica, generalmente enclavada entre dos masas terrestres o, a veces, las menos, a la posición de la plataforma continental. Algunos ejemplos de esto son los siguientes: el mar del canal de La Mancha comunica con el océano Atlántico por el mar Céltico, pero se distingue por su posición entre la costa sur de Inglaterra y la costa norte de Francia. Otro caso muy claro es el mar Mediterráneo, que comunica con el océano Atlántico por el estrecho de Gibraltar y se distingue claramente por estar enclavado entre Europa, Asia y África, al punto de que tiene unas condiciones marítimas muy diferentes (diferentes temperaturas, diferente fauna y flora, y mareas de diferente amplitud). Otro mar abierto, en este caso el de los Sargazos, con su acumulación de algas a lo largo de la Florida, se distingue del océano Atlántico de forma totalmente arbitraria.

II.2.1 Origen y clasificación.
Existen tres categorías de mares: mares litorales (o costeros), mares continentales y los mares cerrados.
Mares litorales

Los mares litorales o costeros pueden ser considerados como golfos, muy grandes y ampliamente abiertos, de los océanos. No están separados de éstos por ningún umbral submarino; no obstante se distinguen de ellos por ser, en promedio, menos profundos, por la mayor amplitud de las mareas y la temperatura más elevada de sus aguas. Son mares litorales el mar de Beaufort en el océano Ártico, el mar de Noruega en el Atlántico o el mar de Omán en el Índico, entre otros.

Mares continentales
Los mares continentales, entre los cuales destaca el mar Mediterráneo, deben su nombre al hecho de hallarse enteramente situados dentro de los continentes, aunque comunicados con los océanos por un estrecho cuya escasa profundidad crea un umbral que dificulta los intercambios; éstos se producen, no obstante, en forma de corrientes de compensación y de descarga. Entre los mares continentales y el océano existen diferencias de temperaturas y de salinidad que llegan a ser considerables. Sus mareas son de tan escasa amplitud que pasan desapercibidas. Además del Mediterráneo, son mares continentales el mar Báltico, el mar Negro y el mar de Japón. En algún caso se habla de mar epicontinental al que se asienta sobre una plataforma continental con su lecho submarino a una profundidad media de 200 m o menos; ejemplos de este tipo son el mar del Norte, o el mar Argentino. Durante el punto máximo de las glaciaciones, los mares epicontinentales desaparecen, pasando a ser solo llanuras de los continentes aledaños.
Mares cerrados
Los mares cerrados suelen ocupar extensas depresiones endorreicas. Corresponden a lagos muy grandes, de agua más o menos salada, entre los cuales destacan el mar Muerto, el mar Caspio y el mar de Aral.

II.2.2 Descripción del método de predicción. Uso de tablas de predicción de marea. 
En las Tablas de Mareas aparecen unos coeficientes de mareas que nos indican la amplitud de la marea prevista (diferencia de altura entre las consecutivas pleamares y bajamares de un lugar). El coeficiente de mareas máximo posible es 118, correspondiente a la mayor pleamar o bajamar que pueda darse excluyendo los efectos meteorológicos. Los coeficientes de mareas se calculan a partir de los siguientes parámetros del sol y de la luna: ascensión recta, declinación, paralaje y distancia de la Tierra al astro.
A pesar de que los coeficientes de marea son los mismos para todo el planeta, afectan de manera muy distinta a la amplitud de las mareas en función del lugar donde nos encontremos. Esta variación de amplitud es casi nula en los mares cerrados, salvo cuando se producen resonancias locales (por ej, llega a ser de 1 m en Venecia); es débil en medio de los océanos, pero suele amplificarse considerablemente al propagarse hasta las costas continentales.
La amplitud de las mareas varía en el espacio y el tiempo.
En el espacio
Existen mareas de intensidad débil (en las áreas próximas al ecuador terrestre, las mareas apenas suelen alcanzar unas decenas de centímetros). En otros lugares existen mareas de intensidad fuerte (ejemplo: costas francesas de la bahía de Saint-Malo), donde se superan regularmente los 10 m.
en el tiempo
El coeficiente y en consecuencia la amplitud de las mareas siguen las fases de la luna con ligeros desniveles en los cuartos menguante y creciente; y grandes desniveles en el momento de luna nueva y luna llena. Las diferencias de amplitud entre mareas bajas y altas presentan grandes contrastes. En Saint-Malo la diferencia de nivel entre la pleamar y la bajamar se reduce a tres metros en periodos de mareas bajas; y alcanza trece en periodo de mareas altas. 

II.2.4 Clasificación de corrientes. Corrientes producidas por mareas.

Según su temperatura

Una clasificación sugerida de estos movimientos proviene de la temperatura de las masas de agua que se desplazan en cada uno de dichos movimientos:


·         Cálida: flujo de las aguas superficiales de los océanos que tiene su origen en la Zona Intertropical y se dirige, a partir de las costas orientales de los continentes (América del Norte y Asia) hacia las latitudes medias y altas en dirección contraria a la rotación terrestre, como por ejemplo la Corriente del Golfo o la de la Kuroshio o Corriente del Japón. En el hemisferio sur, estas corrientes son casi inexistentes, por la configuración de las costas y por el hecho de que en las latitudes de clima templado y frío no existen casi tierras.
·         Fría: flujo de aguas frías que se mueven como consecuencia del movimiento de rotación terrestre, es decir de este a oeste, a partir de las costas occidentales de los continentes por el ascenso de aguas frías de grandes profundidades en la zona intertropical y subtropical. Ejemplos de corrientes frías: la de Canarias, la de Benguela, la de Humboldt o del Perú, y la de California, todas ellas en las costas occidentales de los continentes de la zona intertropical y subtropical. Las corrientes de Oyashio (en el océano Pacífico y la de Groenlandia o corriente del Labrador, también se producen por el ascenso de aguas frías y podrían definirse como una compensación al efecto de las corrientes cálidas cuando alcanzan las altas latitudes en las costas occidentales de los continentes. Estas corrientes frías sólo se presentan en la zona ártica ya que la zona antártica es mucho más uniforme y solo tiene una corriente continua circumpolar en la que no existe un ascenso de aguas frías provocado por el relieve submarino.


·         Mixta: algunas corrientes que surgen en las costas occidentales de los continentes en las zonas próximas a los trópicos se desplazan hacia el este como corrientes frías pero, en la medida en que se desplazan por los océanos más amplios, se van calentando superficialmente y se convierten en cálidas. Por ejemplo, las corrientes de Canarias y de Benguela, que son de aguas frías, se transforman en la corriente ecuatorial del norte y del sur (respectivamente) que son de aguas cálidas. Y lo mismo podemos decir de la de California y la del Perú en el Océano Pacífico.
Según sus características

Una segunda clasificación incluye el tipo de corriente a la cual se asocia el desplazamiento de masas de aguas en cualquier medio. Se asocia según el fenómeno que permite el movimiento (1 ).


·         Corrientes oceánicas, son producidas por el movimiento de rotación terrestre por lo que presentan un movimiento constante, en general, en sentido este - oeste en la zona intertropical o en sentido inverso, de oeste a este, es decir, contrario a la rotación terrestre en las latitudes medias o altas. Se trata, lo mismo que sucede con los vientos constantes o vientos planetarios, de desplazamientos producidas por efecto de la inercia: en la zona intertropical, las corrientes se mueven en sentido contrario a la rotación terrestre, las aguas del fondo oceánico acompañan a nuestro planeta en el movimiento de rotación de oeste a este, pero las aguas superficiales se van quedando atrás por inercia, lo que significa una corriente ecuatorial de gran amplitud y la de mayor volumen de agua que se produce en nuestro planeta. Dicho en otros términos: la corriente ecuatorial se desplaza de este a oeste por inercia ya que las aguas presentan una resistencia a acompañar a nuestro planeta en su movimiento de rotación. Pero en las latitudes medias y altas, las corrientes se mueven de oeste a este debido también al mismo principio de inercia, aunque en este caso, se trata de un efecto inercial que va aumentando progresivamente a medida que aumente la latitud, incrementándose su velocidad y llegando a superar ligeramente a la propia velocidad de la rotación terrestre. Por otra parte, como esta circulación oceánica tiene un patrón similar al de los vientos planetarios, interactúan mutuamente, tanto en su velocidad de desplazamiento como a la cantidad de calor que trasladan. Involucran el movimiento de grandes masas de aguas, afectando la temperatura de la capa superior y repartiendo una enorme cantidad de humedad y, por ende, de calor, en el sentido de los meridianos. Por esta razón, las corrientes oceánicas son las que explican las enormes diferencias climáticas entre las costas americanas y europeas del Atlántico Norte, por citar un ejemplo muy conocido.
·         Corrientes de marea, son corrientes periódicas con ciclo diario que son producidas por la atracción lunar y en menor grado, del sol. Son corrientes superficiales de las aguas del mar y, por lo tanto, involucran en su mayor parte, aguas cálidas.
·         Corrientes de oleaje, son las que modifican en gran parte el litoral y son producidas por los vientos, en especial, por las tempestades o huracanes que se asocian al movimiento de las masas de aire tanto de origen continental como marítimo.


·         Corrientes de deriva litoral: constituyen la resultante de la acción de las corrientes oceánicas al llegar a las costas cuyo trazado presenta alguna inclinación o desviación con respecto a la dirección original de las mismas. El ejemplo de la corriente ecuatorial atlántica al llegar a las costas del Brasil (como puede verse en el mapa de corrientes, es muy claro en este sentido, ya que casi todas las aguas de la misma son desviadas hacia el noroeste porque las costas tienen esta dirección. La corriente de deriva litoral brasileña o corriente del noreste del Brasil, lleva una gran cantidad de aguas cálidas hacia las costas de las Guayanas, costa oriental de Venezuela y las Pequeñas Antillas. Es por este motivo por el que las costas atlánticas de las Guayanas y de Venezuela, presentan un clima más lluvioso que las del noreste del Brasil, ya en el Hemisferio Sur. También tiene otras dos consecuencias muy importantes: la desviación del ecuador térmico hacia el hemisferio Norte y la menor incidencia de los huracanes en las costas meridionales del Brasil.
·         Corrientes de densidad, es la presencia vertical de dos masas de agua con distinta densidad y se presentan en los lugares de contacto entre aguas de distinta temperatura: una fría a mayor profundidad (por su mayor densidad) y otra cálida en la superficie. Generalmente, se desplazan en sentido contrario, por ejemplo, en el estrecho de Gibraltar suelen presentarse muchas veces unas corrientes superficiales hacia el oeste, mientras que en el fondo penetra en el Mediterráneo una gran cantidad de agua procedente del Atlántico mucho mayor en proporción porque el Mar Mediterráneo es deficitario en volumen de agua (es mayor la evaporación que el caudal aportado por los ríos y las lluvias). También se producen en los estrechos daneses a la salida del Mar Báltico

Según la profundidad

Otra clasificación sugerida es por la profundidad en la que se genera la corriente marina.


·         Corrientes de profundidad, son corrientes generadas debajo de los 1000 metros de profundidad (picnoclina), principalmente debido a la rotación terrestre, que da origen a la surgencia de aguas profundas, y por lo tanto frías, en las costas occidentales de los continentes en las latitudes intertropicales. El motivo de estas corrientes de profundidad podría explicarse como una especie de compensación con relación a las corrientes superficiales
·         Corrientes de superficie, son las corrientes originadas por la acción giratoria de la Tierra, y que se ven afectadas por los vientos predominantes, los cuales les transmiten gran cantidad de energía y generan corrientes circulares a escala terrestre (en la franja ecuatorial) o en forma de espiral, formando "bucles" en las latitudes próximas a los trópicos: el giro de estas corrientes se produce hacia la derecha en las latitudes próximas al Trópico de Cáncer y hacia la izquierda en las latitudes del Trópico de Capricornio.